The Act Smart Campaign
Accelerating Cures for Prostate Cancer

Your Support
If we are going to defeat prostate cancer completely, your support is critical. National funding for Act Smart won’t come until we show that personalized medicine is possible. And for that to happen, we are almost completely reliant on individual support. We can start work today, but only with your gift.

More Information
If you have any questions about Act Smart, please contact Colin Ware at 206.685.5412 or warec2@uw.edu, or Jeff Walker at 206.667.1417 or jcwalker@fhcrc.org. Thank you very much for your interest in Act Smart.

We believe it is possible to reduce and eventually eliminate deaths from prostate cancer. Personalized medicine is the key to achieving that goal, and understanding the genetics underlying prostate cancer is the key to precision medicine.
Great Strides in Prostate Cancer Treatment

Men at risk of prostate cancer are far better off than they were a few decades ago. PSA (prostate-specific antigen) testing and the Gleason Index identify most prostate cancers. Surgery and radiation offer successful cures for many. Active surveillance spares thousands the costs and side effects of unnecessary treatment. But even with these advances, 1 man in 36 dies of the disease. Doctors still struggle to identify aggressive cancers and recurrence is common. We have come a long way, but there is work yet to be done.

Personalized Medicine: The Key to Defeating Prostate Cancer

Every man’s prostate cancer is unique. Tumors vary in size, speed of growth and propensity to spread. Cancers respond differently to treatment, and they show a range of mutations in their DNA. This means that there will be no single cure for prostate cancer, and there is no magic bullet. Instead, success will come when treatment is personalized for each patient based on their own, inherited genetic traits and the genetic traits of their cancer.

Act Smart: Putting Research Advances into Practice

Act Smart is a major advancement in personalized treatment for prostate cancer. It has three components:

1. **Smart Research.** Act Smart’s goals include developing a clinical test that analyzes gene mutations specific to prostate cancer, doubling the IPCR’s number of tumor avatars (human tumors grown in mice) to more than 50, and cataloguing the gene sequences of more than 500 tumors and effective treatments for each. New therapies will be designed and tested directly on avatars. Drugs effective on other cancers will be analyzed.

2. **Smart Trials.** Promising therapies will move quickly into trial. Act Smart launches a new model for clinical tests, one that is highly flexible and adapts to immediate findings. These adaptive trials increase the number of drugs tested and get to results quickly. Cancer patients will gain access to successful new therapies far faster than with traditional trials.

3. **Smart Communities.** Act Smart establishes new, statewide partnerships among clinicians, researchers and patients. Research results will be shared. More men from within and outside of Seattle will be invited to join clinical trials. A new prevention center will disseminate information on how to avoid prostate cancer and help individuals understand their own personal risk from the disease.

The IPCR Advantage

The IPCR brings together a world-renowned team of more than 40 scientists and clinicians whose mission is to understand the causes of prostate cancer and its progression, develop new prevention strategies, devise innovative diagnostics and improve survival and quality of life. IPCR researchers were at the forefront of PSA research and the adoption of active surveillance treatment strategies. We lead the field in identifying risk factors for prostate cancer, including obesity, race and heredity, diet and smoking. We also were among the first to identify the incredible genetic diversity of prostate cancers — a finding which explains why patients have such varying reactions to treatment.

The IPCR is also one of only a handful of centers in the world working on personalized medicine, to receive prestigious Specialized Programs for Research Excellence (SPORE) funding from the National Cancer Institute.
Great Strides in Prostate Cancer Treatment

Men at risk of prostate cancer are far better off than they were a few decades ago. PSA (prostate-specific antigen) testing and the Gleason Index identify most prostate cancers. Surgery and radiation offer successful cures for many. Active surveillance spares thousands the costs and side effects of unnecessary treatment. But even with these advances, 1 man in 36 dies of the disease. Doctors still struggle to identify aggressive cancers and recurrence is common. We have come a long way, but there is work yet to be done.

Personalized Medicine: The Key to Defeating Prostate Cancer

Every man’s prostate cancer is unique. Tumors vary in size, speed of growth and propensity to spread. Cancers respond differently to treatment, and they show a range of mutations in their DNA. This means that there will be no single cure for prostate cancer. But now, as the cost to sequence DNA drops, we are poised to take this idea from the laboratory into the clinic. Prohibitive costs once put personalized medicine out of reach. Instead, success will come when treatment is personalized for each patient based on their own, inherited genetic and genetic traits of their cancer.

Act Smart: Putting Research Advances into Practice

Act Smart is a major campaign to pioneer personalized treatment for prostate cancer. It has three components:

Smart Research. Act Smart’s goals include developing a clinical test that analyzes gene mutations specific to prostate cancer, doubling the IPCR’s number of tumor avatars (human tumors grown in mice) to more than 50, and cataloguing the gene sequences of more than 500 tumors and effective treatments for each. New therapies will be designed and tested directly on avatars. Drugs effective on other cancers will be analyzed.

Smart Trials. Promising therapies will move quickly to trial. Act Smart launches a new model for clinical tests, one that is highly flexible and adapts to immediate findings. These adaptive trials increase the number of drugs tested and get to results quickly. Cancer patients will gain access to successful new therapies far faster than with traditional trials.

Smart Communities. Act Smart establishes new, statewide partnerships among clinicians, researchers and patients. Research results will be shared. More men from within and outside of Seattle will be invited to join clinical trials. A new prevention center will disseminate information on how to avoid prostate cancer and help individuals understand their own personal risk from the disease.

The IPCR Advantage

The IPCR brings together a world-renowned team of more than 40 scientists and clinicians whose mission is to understand the causes of prostate cancer and its progression, develop new prevention strategies, devise innovative diagnostics and improve survival and quality of life.

IPCR researchers were at the forefront of PSA research and the adoption of active surveillance treatment strategies. We lead the field in identifying risk factors for prostate cancer, including obesity, race and heredity, diet and smoking. We also were among the first to identify the incredible genetic diversity of prostate cancers — a finding which explains why patients have such varying reactions to treatment. The IPCR is also one of only a handful of institutions to receive prestigious Specialized Programs for Research Excellence (SPORE) funding from the National Cancer Institute.

Our Key Faculty

Listed below are several key faculty connected with the IPCR. In all, the IPCR includes approximately 40 researchers and physicians — in fields ranging from urology to pathology to epidemiology — who are dedicated to improving the lives of men with prostate cancer.

Paul Lange, M.D., FACS, Director, IPCR, UW Professor, Department of Epidemiology, and Affiliate Investigator, Fred Hutchinson Cancer Research Center. Focus: genitourinary oncology, tumor markers, reconstructive urologic surgery.

William Ellis, M.D., UW Professor, Department of Urology. Focus: robot-assisted surgery.

Daniel Lin, M.D., UW Associate Professor, Department of Urology, Director, Division of Urologic Oncology at UW Medical Center, and Joint Associate Member, Fred Hutchinson Cancer Research Center. Focus: genitourinary oncology, early detection and prevention of prostate cancer.

R. Bruce Montgomery, M.D., UW Associate Professor of Medicine, Division of Oncology, Clinical Director, Seattle Cancer Care Alliance Genitourinary/Prostate Oncology Program, and Affiliate Investigator, Fred Hutchinson Cancer Research Center. Focus: growth-factor signaling, drug resistance.

Peter Nelson, M.D., Chair, Scientific Steering Committee-IPCR, Member, Fred Hutchinson Cancer Research Center, and UW Professor of Medicine, Division of Oncology. Focus: ICT therapies for early- and late-stage prostate cancer.

Janet Stanford, Ph.D., MPH, BSN, Member, Fred Hutchinson Cancer Research Center, UW Research Professor, Department of Epidemiology, and UW Adjunct Research Professor, Department of Urology. Focus: the role of environmental, lifestyle and genetic risk factors.

Robert Vessella, Ph.D., UW Professor, Department of Urology. Focus: tumor avatars.
The Act Smart Campaign
Accelerating Cures for Prostate Cancer

Your Support
If we are going to defeat prostate cancer completely, your support is critical. National funding for Act Smart won’t come until we show that personalized medicine is possible. And for that to happen, we are almost completely reliant on individual support. We can start work today, but only with your gift.

More Information
If you have any questions about Act Smart, please contact Colin Ware at 206.685.5412 or warec2@uw.edu, or Jeff Walker at 206.667.1417 or jcwalker@fhcrc.org. Thank you very much for your interest in Act Smart.

We believe it is possible to reduce and eventually eliminate deaths from prostate cancer. Personalized medicine is the key to achieving that goal, and understanding the genetics underlying prostate cancer is the key to precision medicine.